Exercise 42

Show that the solution of the boundary-value problem

$$
\begin{aligned}
u_{r r}+\frac{1}{r} u_{r}+u_{z z} & =0, \quad 0<r<\infty, 0<z<\infty, \\
u(r, z) & =\frac{1}{\sqrt{a^{2}+r^{2}}} \quad \text { on } z=0,0<r<\infty,
\end{aligned}
$$

is

$$
u(r, z)=\int_{0}^{\infty} e^{-\kappa(z+a)} J_{0}(\kappa r) d \kappa=\frac{1}{\sqrt{(z+a)^{2}+r^{2}}}
$$

Solution

The PDE is defined for $0<r<\infty$, so the Hankel transform can be applied to solve it. The zero-order Hankel transform is defined as

$$
\mathcal{H}_{0}\{u(r, z)\}=\tilde{u}(\kappa, z)=\int_{0}^{\infty} r J_{0}(\kappa r) u(r, z) d r,
$$

where $J_{0}(\kappa r)$ is the Bessel function of order 0 . Hence, the radial part of the laplacian in cylindrical coordinates transforms as follows.

$$
\mathcal{H}_{0}\left\{\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}\right\}=-\kappa^{2} \tilde{u}(\kappa, z)
$$

The partial derivative with respect to z transforms like so.

$$
\mathcal{H}_{0}\left\{\frac{\partial^{n} u}{\partial z^{n}}\right\}=\frac{d^{n} \tilde{u}}{d z^{n}}
$$

Take the zero-order Hankel transform of both sides of the PDE.

$$
\mathcal{H}_{0}\left\{u_{r r}+\frac{1}{r} u_{r}+u_{z z}\right\}=\mathcal{H}_{0}\{0\}
$$

The Hankel transform is a linear operator.

$$
\mathcal{H}_{0}\left\{u_{r r}+\frac{1}{r} u_{r}\right\}+\mathcal{H}_{0}\left\{u_{z z}\right\}=0
$$

Use the relations above to transform the derivatives.

$$
-\kappa^{2} \tilde{u}+\frac{d^{2} \tilde{u}}{d z^{2}}=0
$$

Bring the term with \tilde{u} to the other side.

$$
\frac{d^{2} \tilde{u}}{d z^{2}}=\kappa^{2} \tilde{u}
$$

The PDE has thus been reduced to an ODE whose solution can be written in terms of exponential functions.

$$
\tilde{u}(\kappa, z)=A(\kappa) e^{|\kappa| z}+B(\kappa) e^{-|\kappa| z}
$$

In order to keep \tilde{u} bounded as $z \rightarrow \infty$, we require that $A(\kappa)=0$.

$$
\begin{equation*}
\tilde{u}(\kappa, z)=B(\kappa) e^{-|\kappa| z} \tag{1}
\end{equation*}
$$

Use the provided boundary condition at $z=0$ to determine $B(\kappa)$.

$$
\begin{align*}
u(r, 0)=\frac{1}{\sqrt{a^{2}+r^{2}}} \rightarrow \quad \mathcal{H}_{0}\{u(r, 0)\} & =\mathcal{H}_{0}\left\{\frac{1}{\sqrt{a^{2}+r^{2}}}\right\} \\
\tilde{u}(\kappa, 0) & =\frac{e^{-a \kappa}}{\kappa} \tag{2}
\end{align*}
$$

Plugging in $z=0$ into equation (1) and using equation (2), we get

$$
\tilde{u}(\kappa, 0)=B(\kappa)=\frac{e^{-a \kappa}}{\kappa} .
$$

Thus,

$$
\tilde{u}(\kappa, z)=\frac{e^{-a \kappa}}{\kappa} e^{-|\kappa| z} .
$$

Now that we have $\tilde{u}(\kappa, z)$, we can get $u(r, z)$ by taking the inverse Hankel transform of it.

$$
u(r, z)=\mathcal{H}_{0}^{-1}\{\tilde{u}(\kappa, z)\}
$$

It is defined as

$$
\mathcal{H}_{0}^{-1}\{\tilde{u}(\kappa, z)\}=\int_{0}^{\infty} \kappa J_{0}(\kappa r) \tilde{u}(\kappa, z) d \kappa,
$$

so we have

$$
u(r, z)=\int_{0}^{\infty} \kappa J_{0}(\kappa r) \frac{e^{-(z+a) \kappa}}{\kappa} d \kappa .
$$

The absolute value sign on κ has been dropped because it is positive. Cancel κ.

$$
u(r, z)=\int_{0}^{\infty} e^{-(z+a) \kappa} J_{0}(\kappa r) d \kappa
$$

Use the known integral

$$
\int_{0}^{\infty} e^{-a \kappa} J_{0}(\kappa r) d \kappa=\frac{1}{\sqrt{a^{2}+r^{2}}}
$$

Therefore,

$$
u(r, z)=\frac{1}{\sqrt{(z+a)^{2}+r^{2}}} .
$$

